智能制造背景下智能工厂的特点

发布时间:   浏览: 次  

智能工厂代表了高度互联和智能化的数字时代,工厂的智能化通过互联互通、数字化、大数据、智能装备与智能供应链五大关键领域得以体现,每个领域的特征如下

一.互联互通

互联互通是通过CPS系统将人、物、机器与系统进行连接,以物联网作为基础,通过传感器、RFID、二维码和无线局域网等实现信息的采集,通过PLC和本地及远程服务器实现人机界面的交互,在本地服务器和云存储服务器实现数据读写,在ERP、PLM、MES和SCADA等平台实现无缝对接,从而达到信息的畅通,人机的智能。一方面,通过这些技术实现智能工厂内部从订单、采购、生产与设计等的信息实时处理与通畅,另一方面相关设计供应商、采购供应商、服务商和客户等与智能工厂实现互联互通,确保生产信息、服务信息等的同步,采购供应商随时可以提取生产订单信息,客户随时可以提交自己的个性化订单且可以查询自己订单的生产进展,服务商随时保持与客户等的沟通与相关事物处理。

二.数字化

数字化包含两方面内容,一方面是指智能工厂在工厂规划设计、工艺装备开发及物流等全部应用三维设计与仿真;通过仿真分析,消除设计中的问题,将问题提前进行识别,减少后期改进改善的投入,从而达到优化设计成本与质量,实现数字化制造和QCD与灵活生产的目标,实现真正的精益,通过仿真运营成本降低10-30%,劳动生产率提高15-30%。

另一方面,在传感器、定位识别、数据库分析等物联网基础数字化技术的帮助下,数字化贯穿产品创造价值链和智能工厂制造价值网络,从研发BOM到采购BOM和制造BOM,甚至到营销服务的BOM准确性与及时性直接影响是否能实现智能化,从研发到运营,乃至商业模式也需要数字化的贯通,从某种程度而言数字化的实现程度也成为智能制造战略成功的关键。

三.大数据

大数据,是一种规模大到在获取、存储、管理、分析方面大大超出传统数据库软件工具处理能力范围的数据集合,从大数据、物联网的硬件基础、连接技术到中间数据存储平台、数据分析平台形成了整个大数据的架构,实现了底层硬件数据采集到顶层数据分析的纵向整合。

大数据的战略意义不在于掌握庞大的数据信息,更重要的是对数据进行专业化处理,将来自各专业的各类型数据进行提取、分割、建立模型并进行分析,深度挖掘数据背后的潜在问题和贡献价值。数据采集方面毫无疑问做的很好,但数据也仅仅停留在形成报表的层面,无法直接利用与分析,识别出问题并进行整改,直接反映的是数据分析和数据应用人员的缺失,尤其是与专业相结合,需要既了解专业又懂得建模和算法的数据分析人才,这也是大数据面临的重要挑战,亟需企业和学校联合共同培养,且从取消手工的数据处理着手开展逐步积累,同时也反映了IT与制造的融合与同步不足。

四.智能供应链

智能供应链重点包含供应物流、生产物流、整车物流,各相应环节实施物流信息实时采集、同步传输、数据共享,并驱动物流设备运行,实现智能物流体系,达到准时化、可视化的目的,确保了资源的有效共享,也确保了订单的准时交付,在订单准确的同时减小了存储,最大限度的避免了仓储及二次转运的费用,降低生产成本,也是主机厂和供应商之间紧密合作下的质量和价格的优化,达到双赢的效果。推荐阅读【构建面向工业4.0的智能工厂和智能物流系统】

五.智能装备

智能装备通过智能产品、人机界面、RFID射频技术、插入技术、智能网络及APP等具备可感知、可连接,形成了集群环境,最终形成“可感知-自记忆-自认知-自决策-自重构”的核心能力,如谷歌旗下公司开发的AlphaGo一样具备深度学习的智能,根据实际形势的输入可以自动分析判断、逻辑推理,思考下一步的落子,在人工智能领域形成了对人类围棋的绝对压倒性优势,AlphaGo的出现象征着计算机技术已进入人工智能的新信息技术时代(新IT时代),未来将于医疗等行业进行深度合作,作为人工智能的代表也预示智能装备的时代来临,充分证明智能装备是智能工厂物联网和数字化制造的基础,也是物联网实现的关键要素


智能制造的目标

在经济快速增长期,传统价值链的制造企业和用户企业之间的矛盾被大量的订单和充裕的现金流掩盖,随着中国经济常态化,材料成本的增长,环保压力的增加,市场和资金的双重压力来临,两者之间的矛盾日趋显著。制造企业为提高生产效率,提高质量,降低生产成本,只能进行生产线升级与智能制造,下游相关投入会变为成本层层传递给上游,但又不会也不可能完全转嫁给消费者。如何为用户创造新的需求和价值才是目的,如何通过智能制造解决用户问题才应该是企业重点考虑的

如何实现个性化的定制也是智能制造的一个方向;市场作为一线的战场,能倾听到客户真实的声音与需求,真正为客户思考,为每一个价值链问题进行思考,坚信“问题就是机会”,思考哪怕觉得不可能一点需求,都有可能创造无限的价值,关键也是要融入智能工厂的五大领域技术,市场做好的同时不能仅仅依靠研发、市场,更多的也应该考虑团队协作,考虑立体化多方位的智能化技术手段,同时智能制造也需要建立在市场驱动的前提下,将科技驱动作为技术手段,逐步实现智能工厂,实现智能制造,打造用户新的需求和价值增长点。


相邻文章